A COMPARATIVE SIMULATION STUDY OF ROBUST ESTIMATORS OF STANDARD ERRORS by
نویسندگان
چکیده
A COMPARATIVE SIMULATION STUDY OF ROBUST ESTIMATORS OF STANDARD ERRORS Natalie Johnson Department of Statistics Statistics Master of Science The estimation of standard errors is essential to statistical inference. Statistical variability is inherent within data, but is usually of secondary interest; still, some options exist to deal with this variability. One approach is to carefully model the covariance structure. Another approach is robust estimation. In this approach, the covariance structure is estimated from the data. White (1980) introduced a biased, but consistent, robust estimator. Long et al. (2000) added an adjustment factor to White’s estimator to remove the bias of the original estimator. Through the use of simulations, this project compares restricted maximum likelihood (REML) with four robust estimation techniques: the Standard Robust Estimator (White 1980), the Long estimator (Long 2000), the Long estimator with a quantile adjustment (Kauermann 2001), and the empirical option of the MIXED procedure in SAS. The results of the simulation show small sample and asymptotic properties of the five estimators. The REML procedure is modelled under the true covariance structure, and is the most consistent of the five estimators. The REML procedure shows a slight small-sample bias as the number of repeated measures increases. The REML procedure may not be the best estimator in a situation in which the covariance structure is in question. The Standard Robust Estimator is consistent, but it has an extreme downward bias for small sample sizes. The Standard Robust Estimator changes little when complexity is added to the covariance structure. The Long estimator is unstable estimator. As complexity is introduced into the covariance structure, the coverage probability with the Long estimator increases. The Long estimator with the quantile adjustment works as designed by mimicking the Long estimator at an inflated quantile level. The empirical option of the MIXED procedure in SAS works well for homogeneous covariance structures. The empirical option of the MIXED procedure in SAS reduces the downward bias of the Standard Robust Estimator when the covariance structure is homogeneous.
منابع مشابه
A Two-Phase Robust Estimation of Process Dispersion Using M-estimator
Parameter estimation is the first step in constructing any control chart. Most estimators of mean and dispersion are sensitive to the presence of outliers. The data may be contaminated by outliers either locally or globally. The exciting robust estimators deal only with global contamination. In this paper a robust estimator for dispersion is proposed to reduce the effect of local contamination ...
متن کاملSaturated Neural Adaptive Robust Output Feedback Control of Robot Manipulators:An Experimental Comparative Study
In this study, an observer-based tracking controller is proposed and evaluatedexperimentally to solve the trajectory tracking problem of robotic manipulators with the torque saturationin the presence of model uncertainties and external disturbances. In comparison with the state-of-the-artobserver-based controllers in the literature, this paper introduces a saturated observer-based controllerbas...
متن کاملApproximating Bayes Estimates by Means of the Tierney Kadane, Importance Sampling and Metropolis-Hastings within Gibbs Methods in the Poisson-Exponential Distribution: A Comparative Study
Here, we work on the problem of point estimation of the parameters of the Poisson-exponential distribution through the Bayesian and maximum likelihood methods based on complete samples. The point Bayes estimates under the symmetric squared error loss (SEL) function are approximated using three methods, namely the Tierney Kadane approximation method, the importance sampling method and the Metrop...
متن کاملEstimating Variance of the Sample Mean in Two-phase Sampling with Unit Non-response Effect
In sample surveys, we always deal with two types of errors: Sampling error and non-sampling error. One of the most common non-sampling errors is nonresponse. This error happens when some sample units are not observed or viewed but they do not answer some of the questions. The complete prevention of this error is not possible, but it can be significantly reduced. The non-response causes bias and ...
متن کاملOn the asymptotic standard error of a class of robust estimators of ability in dichotomous item response models.
In item response theory, the classical estimators of ability are highly sensitive to response disturbances and can return strongly biased estimates of the true underlying ability level. Robust methods were introduced to lessen the impact of such aberrant responses on the estimation process. The computation of asymptotic (i.e., large-sample) standard errors (ASE) for these robust estimators, how...
متن کامل